60 research outputs found

    Minimum energy wireless sensor networks

    Get PDF
    PhD programme overviewHere, on-off keying modulation is used as a means of reducing the transmit energy requirements whilst exploiting inherent channel coding, which sets the scene of this PhD study

    Performance analysis of a novel decentralised MAC protocol for cognitive radio networks

    Get PDF
    Due to the demand of emerging Cognitive Radio (CR) technology to permits using the unused licensed spectrum parts by cognitive users (CUs) to provide opportunistic and efficient utilisation of the white spaces. This requires deploying a CR MAC with the required characteristics to coordinate the spectrum access among CUs. Therefore, this paper presents the design and implementation of a novel Medium Access Control (MAC) protocol for decentralised CRNs (MCRN). The protocol provides efficient utilisations of the unused licensed channels and enables CUs to exchange data successfully over licensed channels. This is based on the observation procedure of sensing the status of the Licensed Users (LUs) are ON or OFF over the licensed channels. The protocol is validated with the comparison procedure against two different benchmark protocols in terms of the network performance; communication time and throughput. Therefore, performance analysis demonstrated that the proposed MCRN perform better and achieve higher throughput and time benefits than the benchmarks protocols

    Spectrum sharing security and attacks in CRNs: a review

    Get PDF
    Cognitive Radio plays a major part in communication technology by resolving the shortage of the spectrum through usage of dynamic spectrum access and artificial intelligence characteristics. The element of spectrum sharing in cognitive radio is a fundament al approach in utilising free channels. Cooperatively communicating cognitive radio devices use the common control channel of the cognitive radio medium access control to achieve spectrum sharing. Thus, the common control channel and consequently spectrum sharing security are vital to ensuring security in the subsequent data communication among cognitive radio nodes. In addition to well known security problems in wireless networks, cognitive radio networks introduce new classes of security threats and challenges, such as licensed user emulation attacks in spectrum sensing and misbehaviours in the common control channel transactions, which degrade the overall network operation and performance. This review paper briefly presents the known threats and attacks in wireless networks before it looks into the concept of cognitive radio and its main functionality. The paper then mainly focuses on spectrum sharing security and its related challenges. Since spectrum sharing is enabled through usage of the common control channel, more attention is paid to the security of the common control channel by looking into its security threats as well as protection and detection mechanisms. Finally, the pros and cons as well as the comparisons of different CR - specific security mechanisms are presented with some open research issues and challenges

    A survey of QoS-aware web service composition techniques

    Get PDF
    Web service composition can be briefly described as the process of aggregating services with disparate functionalities into a new composite service in order to meet increasingly complex needs of users. Service composition process has been accurate on dealing with services having disparate functionalities, however, over the years the number of web services in particular that exhibit similar functionalities and varying Quality of Service (QoS) has significantly increased. As such, the problem becomes how to select appropriate web services such that the QoS of the resulting composite service is maximized or, in some cases, minimized. This constitutes an NP-hard problem as it is complicated and difficult to solve. In this paper, a discussion of concepts of web service composition and a holistic review of current service composition techniques proposed in literature is presented. Our review spans several publications in the field that can serve as a road map for future research

    DDH-MAC: a novel dynamic de-centralized hybrid MAC protocol for cognitive radio networks

    Get PDF
    The radio spectrum (3kHz - 300GHz) has become saturated and proven to be insufficient to address the proliferation of new wireless applications. Cognitive Radio Technology which is an opportunistic network and is equipped with fully programmable wireless devices that empowers the network by OODA cycle and then make intelligent decisions by adapting their MAC and physical layer characteristics such as waveform, has appeared to be the only solution for current low spectrum availability and under utilization problem. In this paper a novel Dynamic De-Centralized Hybrid “DDH-MAC” protocol for Cognitive Radio Networks has been presented which lies between Global Common Control Channel (GCCC) and non-GCCC categories of cognitive radio MAC protocols. DDH-MAC is equipped with the best features of GCCC MAC protocols but also overcomes the saturation and security issues in GCCC. To the best of authors' knowledge, DDH-MAC is the first protocol which is hybrid between GCCC and non-GCCC family of protocols. DDH-MAC provides multiple levels of security and partially use GCCC to transmit beacon which sets and announces local control channel for exchange of free channel list (FCL) sensed by the co-operatively communicating cognitive radio nodes, subsequently providing secure transactions among participating nodes over the decided local control channel. This paper describes the framework of the DDH-MAC protocol in addition to its pseudo code for implementation; it is shown that the pre-transmission time for DDH-MAC is on average 20% better while compared to other cognitive radio MAC protocols

    Wireless quality-of-service for 60GHz streaming media

    Get PDF
    PhD programmeThe primary aim of this PhD is firstly to understand Ultra-wideband technology (WiMedia), its applications, QoS requirements and then feed this knowledge into development of some novel secure QoS policies and architecture for the said technology before deploying them after analysis performed through modelling and simulations

    Security challenges in cyber systems

    Get PDF

    Fruit fly optimization algorithm for network-aware web service composition in the cloud

    Get PDF
    Service Oriented Computing (SOC) provides a framework for the realization of loosely coupled service oriented applications. Web services are central to the concept of SOC. Currently, research into how web services can be composed to yield QoS optimal composite service has gathered significant attention. However, the number and spread of web services across the cloud data centers has increased, thereby increasing the impact of the network on composite service performance experienced by the user. Recently, QoS-based web service composition techniques focus on optimizing web service QoS attributes such as cost, response time, execution time, etc. In doing so, existing approaches do not separate QoS of the network from web service QoS during service composition. In this paper, we propose a network-aware service composition approach which separates QoS of the network from QoS of web services in the Cloud. Consequently, our approach searches for composite services that are not only QoS-optimal but also have optimal QoS of the network. Our approach consists of a network model which estimates the QoS of the network in the form of network latency between services on the cloud. It also consists of a service composition technique based on fruit fly optimization algorithm which leverages the network model to search for low latency compositions without compromising service QoS levels. The approach is discussed and the results of evaluation are presented. The results indicate that the proposed approach is competitive in finding QoS optimal and low latency solutions when compared to recent techniques

    5G-based V2V broadcast communications: A security perspective

    Get PDF
    The V2V services have been specified by the 3GPP standards body to support road safety and non-safety applications in the 5G cellular networks. It is expected to use the direct link (known as the PC5 interface), as well as the new radio interface in 5G, to provide a connectivity platform among vehicles. Particularly, vehicles will use the PC5 interface to broadcast safety messages to inform each other about potential hazards on the road. In order to function safely, robust security mechanisms are needed to ensure the authenticity of received messages and trustworthiness of message senders. These mechanisms must neither add significantly to message latency nor affect the performance of safety applications. The existing 5G-V2V standard allow protection of V2V messages to be handled by higher layer security solutions defined by other standards in the ITS domain. However having a security solution at the 5G access layer is conceivably preferable in order to ensure system compatibility and reduce deployment cost. Accordingly, the main aim of this paper is to review options for 3GPP access layer security in future 5G-V2V releases. Initially, a summary of 5G-V2V communications and corresponding service requirements is presented. An overview of the application level security standards is also given, followed by a review of the impending options to secure V2V broadcast messages at the 5G access layer. Finally, paper presents the relevant open issues and challenges on providing 3GPP access layer security solution for direct V2V communication

    Design and Study of a Circular Polarised Conical-Disc-Backed Spiral Antenna for X-Band Applications

    Get PDF
    Design of a conical-disc-backed circular-polarized Archimedean single-arm spiral antenna is presented in this paper. The antenna operation covers the X-band frequencies ranging from 8 to 12 GHz. The antenna makes use of a very simple structure having the single-arm spiral backed by a cone-shaped metallic disc to achieve high gain, circular polarization, and unidirectional symmetric radiation near the boresight. The diameter of the antenna only measures to 40 mm. The simulated and measured results show that the antenna has a very good impedance matching (better than -10 dB), good right-hand circular polarization (with an axial ratio of ≤3 dB) throughout the frequency range of interest, and offers a maximum peak gain of 11.4 dBiC. The presented S 11 response and radiation pattern results also show that the antenna offers excellent performance in the X-band with no need of a balun. Antenna usefulness is also established through a detailed parametric study and comparison with a traditional flat disc structure. Compact size, simple design, wide range, and high gain make the proposed antenna design a good choice for radar, terrestrial communications, and satellite/aerospace communications applications
    corecore